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Motivation: Increasing Demand for Computing 

•  computer simulation has been established as a standard 
method in many areas of science and engineering 
–  e.g. computational fluid dynamics, structure simulation, propagation of 

electromagnetic fields, ... 
–  demand for finer temporal and spatial resolution or more complex models 
–  in many cases compute bound 

•  new areas are addressed with different characteristics 
–  e.g. bioinformatics, large scale molecular dynamics, system's biology, ... 
–  compute but increasingly also memory bound (big data) 

•  availability of high performance computing resources is a 
competitive advantage or necessity in many areas 
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Simple CPU Performance Model (1) 

•  performance measured as execution time for given program 
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texecution = # instructions ⋅
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Simple CPU Performance Model (2) 

•  performance measured as execution time for given program 
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texecution = # instructions ⋅
cycles

instruction ⋅
time
cycle

reduce #cycles/instructions (improve throughput) 

a = b + c 
d = a + e 

overlap execution of instructions 
(pipelining) 

begin execution of dependent 
instructions already before all 
dependencies are resolved 

start multiple instructions at once 
(multiple issue/superscalar) 

a = b + c 
d = e + f 

concurrently start independent 
instructions 



Simple CPU Performance Model (3) 

•  performance measured as execution time for given program 
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texecution = # instructions ⋅
cycles

instruction ⋅
time
cycle

execute cycles in shorter time 

balance time spent in each 
pipeline stage 

div or add sub 

add div or sub 

use leading semiconductor 
technology 

image: Intel 



Riding the Waves of Moore's Law 

•  despite all computer 
architecture innovations, 
Moore's law contributed 
most to performance 
increase 
–  more usable chip area 
–  faster clock speed 
–  exponential growth of 

performance 

•  but since early 2000's 
hardly any increase in 
single core performance 
due to 
–  power dissipation 
–  design complexity 
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Limits of Single-Core CPU Performance Growth 

•  CPUs not tailored to particular 
task 
–  unknown applications 
–  unknown program flow 
–  unknown memory access patterns 
–  unknown parallelism 

•  generality causes inefficiencies 
–  poor relation of active chip area to 

total area 
–  excessive power consumption 
–  difficult design process 

10 

die shot of a 4-core  
AMD Barcelona CPU 

chip area that contributes to 
actual computation 

image: Anandtech 



Parallel Computing Comes to Rescue 

•  parallel computing is celebrating a renaissance 
–  single core performance is stagnant 
–  today processor cores can be integrated on a single chip 
–  fast networking is available (clusters) 

•  promise of parallel computing 
–  divide and spread work to N processors to achieve an N-times speedup 
–  ideally: use N processors to achieve a speedup of factor N 
–  improved energy efficiency since processors can be used that provide the 

best performance / energy ratio 

•  practical challenges 
–  how to program parallel processors (model, language, compiler, ...) 
–  management of data and I/O 
–  overheads of parallelization 
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Amdahl's Law – Limits to Parallel Computing 

•  fraction of non-parallelizable (serial) part of program limits 
maximum acceleration when using N processors 
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Parallel Processor Architectures 

•  many different processor architectures have been recently 
introduced 
–  typically used as hardware accelerators in combination with regular CPUs 
 

•  interesting times for computer architecture research 
–  a lot of experimentation: many simple vs. few complex cores, shared vs. 

distributed memory, fixed function vs. customizable, .. 
–  the future may be heterogeneous 

•  current major trends 
–  general-purpose graphics processing units (GPGPUs) 
–  custom computing / field-programmable gate arrays (FPGAs) 
–  many-cores e.g. Intel SCC, Intel MIC, Tilera, ... 
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Current Parallel Computing Architectures 

multi-core CPU many-core CPU field programmable 
gate arrays (FPGA) 

graphics processing  
units (GPU) 

cores ~10 ~100 ~1000 ~100'000 

core 
complexity 

computation 
model 

MIMD + SIMD data-flow SIMD 

parallelism thread and data parallel data parallel arbitrary 
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memory 
model shared distributed 

complex (opt. for single-thread performance) simple 

power 150W 200W 250W 50W 



Schematic View of Massively Parallel Architectures 
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Custom Computing with FPGAs – Basic Idea 

•  challenges 
–  translation of application into a custom hardware accelerator 
–  development of efficient programmable hardware for implementing 

accelerators 
–  enabling wide range of users to perform this task 
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Custom Computing – Example 

•  bioinformatics: substring search in genome sequences 
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Custom Computing Technology 

•  reconfigurable hardware architecture 
–  software programmable processing blocks and  
–  software programmable interconnect 
–  massively parallel 
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Maturing Custom Computing Systems 

•  experimental academic systems 
–  proof-of-concept demonstrators 

•  PCI-attached FPGA acceleration 
cards 
–  most widespread platforms 

•  custom computing servers 
–  Cray, SGI, SRC, Convey, Maxeler, 

XtremeData, ... 
–  targeted at HPC 
–  tight integration of CPU and FPGAs 
–  domain-specific integrated tool flows 
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public class Mav_kernel extends Kernel { 

  public Mav_kernel (KernelParameters parameters) { 

    super(parameters); 

    HWVar x = io.input(“A“, hwFloat(8, 24)); 

    HWVar prev = stream.offset(x, -1); 

    HWVar next = stream.offset(x,  1); 

    HWVar sum = prev + x + next; 

    HWVar result = sum / 3; 

    io.output(“B“,  result, hwFloat(8, 24)); 

  } 

} 

Example for an Integrated Custom Computing Solution 

•  Maxeler dataflow computing 
–  tightly integrated hard- and software 
–  high-level Java-based specification 
–  FPGA internals and tools hidden from developer 
–  suitable for streaming applications 

A

B

-1 +1 

+ 

+ 

/ 3 

example: Maxeler 

b[i] = (a[i-2]+a[i-1]+a[i]) / 3 
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Case Study 1: FFT Kernel 

•  performance and energy efficiency for 1D complex in-place FFT 
–  CPU (FFTW), GPU (CuFFT), FPGA (Convey HC-1 library) 
–  scaling: data size O(N), computation O(N*log(N)) 
–  significant difference when considering time/energy for copying data to/

from accelerator 

22 
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and how it compares to a baseline sequential memory access
bandwidth. We used the BLAS routine blas:sscopy available
to each platform. This routine copies a real vector into another
real vector. The increment between two consecutive elements
in each vector can be specified, i.e. the stride parameter. The
results of this experiment for vectors of 32 million elements
are shown in Fig. 9. As the stride parameter gets larger, the
data transfer rate of the GPU becomes slower than that of
HC-1.

However, the floating-point performance of the HC-1 drops
significantly if data transfer times between host memory and
coprocessor memory are taken into account. Fortunately, there
are various applications that execute many FFT operations
between memory transfers from CPU memory to coprocessor
memory. An example of such an application is the protein-
protein docking simulator ZDock [27], which uses a scoring
scheme to determine the best docking positions. At the heart
of ZDock is an FFT used for computing convolutions, and
once the host processor has sent the initial input data, the
coprocessor can perform multiple FFTs without significant
data transfer.

In terms of energy efficiency, the HC-1 generally fares better
than the GPU and the CPU, as shown in Fig. 10. It is twice as
energy efficient as the GPU, and about 6 times more energy
efficient than a multi-threaded CPU implementation for large
FFT sizes.

D. Monte-Carlo Methods: Asian Option Pricing

Table V shows the performance of an HC-1 implementation
of an Asian option pricing application, compared to the
performance of CPU and GPU implementations. For the Asian
option pricing benchmark, we select the same parameters as
in [16], i.e. one million simulations over a time period of 356
steps. We use an Intel Xeon 5138 dual-core processor running
at 2.13GHz with 8GB of memory for the CPU implemen-
tation. We also include performance results of an optimised
FPGA implementation [16] coded in a hardware description
language (HDL) targeting a Xilinx xc5lx330t FPGA clocked
at 200MHz.

 0

 100

 200

 300

 400

 500

 600

4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

M
FL

O
PS

/W
at

t

FFT size

1-D FFT - Energy Efficiency 

FFTW threaded
HC-1

HC-1 with memory transfer
CuFFT with memory transfer

CuFFT

Fig. 10. Energy efficiency for 1-dimensional in-place single-precision
complex-to-complex FFT

These results show that using the HC-1 coprocessor yields a
performance improvement of up to 18 times over an optimized
multi-threaded software implementation. The performance of
the HC-1 is about the same as a single precision GPU imple-
mentation, and is twice as fast as the double precision version.
The major reason for this performance improvement is the
vectorization of the FOR loops, which form the bottleneck in
the option pricing benchmark. Moreover, the random number
generator is implemented in the HC-1 as a custom hardware
library, whereas the CUDA GPU must use an instruction based
approach. Note that currently the finance analytics personal-
ity for HC-1 does not support single-precision floating-point
operations, so it cannot be compared directly with a hand-
crafted single-FPGA version in single-precision floating-point
arithmetic [16] also shown in Table V; however, there is
no doubt that the hand-crafted version involves much more
development effort.

In terms of energy efficiency, the GPU and the HC-1
coprocessor are only about 2 to 4 times more energy efficient
than the CPU as shown in Table VI, with the HC-1 about
two times more energy efficient than the GPU. The measured
GPU and HC-1 power consumption is relatively higher than
the other benchmarks. This can be explained by the fact
that Monte-Carlo methods are ‘embarrassingly parallel’, which
leads to near full utilisation of the hardware resources on HC-1
and the GPU.

TABLE V
PERFORMANCE RESULTS FOR ASIAN OPTION PRICING

Implementation Execution time Speed-up
Single Double Single Double

CPU single-threaded 8,333 ms 14,727ms 0.53x 0.57x
CPU multi-threaded 4,446 ms 8,378 ms 1x 1x
Convey HC-1 - 471 ms - 17.8x
Tesla C1060 [16] 440 ms 1,078 ms 10x 7.7x
HDL-coded FPGA [16] 115 ms - 38.6x -

TABLE III
STREAM BENCHMARK RESULTS FOR HC-1

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 35.82 35.77 35.88
SCALE 35.10 35.06 35.16

ADD 42.09 42.06 42.12
TRIAD 44.75 44.61 44.86

TABLE IV
STREAM BENCHMARK RESULTS FOR TELSA C1060

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 73.84 73.24 74.34
SCALE 74.00 73.52 74.34

ADD 71.14 70.87 71.46
TRIAD 71.23 71.05 71.43

two times larger than that of the HC-1. These figures, when
combined with the peak floating-point performance of GPUs
and the HC-1, suggest that the GPU is likely to outperform
the HC-1 for streaming programs with intensive computation
and bandwidth requirements.

B. Dense Matrix Multiplication
In our work, we use the Intel MKL [25] for software matrix

multiplication. The matrix-matrix multiplication benchmark
results are shown in Fig. 6 and Fig. 7. The GPU is a clear
winner in terms of both performance (up to 370 GFLOPS)
and power efficiency (over 5GFLOPS/Watt). This is expected,
since the performance of the matrix multiplication benchmark
is computation bound, and the Tesla C1060 has over 10
times more floating-point peak performance than the HC-1. In
addition, the HC-1 implementation offers no significant speed-
up over a multi-threaded MKL implementation running on an
Intel Xeon E5420 Quad-Core CPU.

The GPU is about 5 times faster than both the CPU and the
Convey Coprocessor. This speed-up decreases to about 2.5 to
4.2 times if we include data transfer from the main memory to
the GPU memory, while the HC-1 coprocessor can be slower
than the CPU when data transfers from the host processor
memory to the coprocessor memory are taken into account.

C. Fast Fourier Transform
In this work, we use the popular FFTW [26] for the CPU

implementation, as FFTW supports multi-threading and is
reported to be more efficient than its Intel MKL counterpart.
Fig. 8 shows the performance of a one-dimensional in-place
single-precision complex-to-complex FFT on the three plat-
forms. The HC-1 outperforms the GPU (CUFFT) by up to a
factor of three for large FFT sizes, and is about 16 times faster
than the single-threaded FFTW, or about 4 times faster than
the multi-threaded version.

The HC-1 implementation of the FFT achieves over 65
GFlops, thanks to its coprocessor memory subsystem that
is optimized for non-unit stride and random memory ac-
cesses [17]. The Tesla C1060 uses GDDR memories which
are optimised for sequential memory access operations and
stream programming for graphics applications. This leads to a
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performance penalty if GPU applications, such as FFT, involve
non-sequential memory accesses [12].

To further investigate the effect of strided memory access
on the performance of the HC-1 and Tesla C1060 GPU, we
conduct the following experiment. We measure the effective
bandwidth that can be achieved with strided memory access,
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Case Study 2: Matrix Multiplication Kernel 

•  performance and energy efficiency for dense matrix 
multiplication (DGEMM) 
–  CPU (Intel MKL), GPU (CUBLAS), FPGA (Convey math library) 
–  scaling: data size O(N^2), computation ~ O(n^3) 
–  modest difference when considering time/energy for copying data to/from 

accelerator 

23 

TABLE III
STREAM BENCHMARK RESULTS FOR HC-1

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 35.82 35.77 35.88
SCALE 35.10 35.06 35.16

ADD 42.09 42.06 42.12
TRIAD 44.75 44.61 44.86

TABLE IV
STREAM BENCHMARK RESULTS FOR TELSA C1060

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 73.84 73.24 74.34
SCALE 74.00 73.52 74.34

ADD 71.14 70.87 71.46
TRIAD 71.23 71.05 71.43

two times larger than that of the HC-1. These figures, when
combined with the peak floating-point performance of GPUs
and the HC-1, suggest that the GPU is likely to outperform
the HC-1 for streaming programs with intensive computation
and bandwidth requirements.

B. Dense Matrix Multiplication
In our work, we use the Intel MKL [25] for software matrix

multiplication. The matrix-matrix multiplication benchmark
results are shown in Fig. 6 and Fig. 7. The GPU is a clear
winner in terms of both performance (up to 370 GFLOPS)
and power efficiency (over 5GFLOPS/Watt). This is expected,
since the performance of the matrix multiplication benchmark
is computation bound, and the Tesla C1060 has over 10
times more floating-point peak performance than the HC-1. In
addition, the HC-1 implementation offers no significant speed-
up over a multi-threaded MKL implementation running on an
Intel Xeon E5420 Quad-Core CPU.

The GPU is about 5 times faster than both the CPU and the
Convey Coprocessor. This speed-up decreases to about 2.5 to
4.2 times if we include data transfer from the main memory to
the GPU memory, while the HC-1 coprocessor can be slower
than the CPU when data transfers from the host processor
memory to the coprocessor memory are taken into account.

C. Fast Fourier Transform
In this work, we use the popular FFTW [26] for the CPU

implementation, as FFTW supports multi-threading and is
reported to be more efficient than its Intel MKL counterpart.
Fig. 8 shows the performance of a one-dimensional in-place
single-precision complex-to-complex FFT on the three plat-
forms. The HC-1 outperforms the GPU (CUFFT) by up to a
factor of three for large FFT sizes, and is about 16 times faster
than the single-threaded FFTW, or about 4 times faster than
the multi-threaded version.

The HC-1 implementation of the FFT achieves over 65
GFlops, thanks to its coprocessor memory subsystem that
is optimized for non-unit stride and random memory ac-
cesses [17]. The Tesla C1060 uses GDDR memories which
are optimised for sequential memory access operations and
stream programming for graphics applications. This leads to a
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performance penalty if GPU applications, such as FFT, involve
non-sequential memory accesses [12].

To further investigate the effect of strided memory access
on the performance of the HC-1 and Tesla C1060 GPU, we
conduct the following experiment. We measure the effective
bandwidth that can be achieved with strided memory access,
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TABLE III
STREAM BENCHMARK RESULTS FOR HC-1

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 35.82 35.77 35.88
SCALE 35.10 35.06 35.16

ADD 42.09 42.06 42.12
TRIAD 44.75 44.61 44.86

TABLE IV
STREAM BENCHMARK RESULTS FOR TELSA C1060

Function Average Rate (GB/s) Min Rate (GB/s) Max Rate (GB/s)
COPY 73.84 73.24 74.34
SCALE 74.00 73.52 74.34

ADD 71.14 70.87 71.46
TRIAD 71.23 71.05 71.43

two times larger than that of the HC-1. These figures, when
combined with the peak floating-point performance of GPUs
and the HC-1, suggest that the GPU is likely to outperform
the HC-1 for streaming programs with intensive computation
and bandwidth requirements.

B. Dense Matrix Multiplication
In our work, we use the Intel MKL [25] for software matrix

multiplication. The matrix-matrix multiplication benchmark
results are shown in Fig. 6 and Fig. 7. The GPU is a clear
winner in terms of both performance (up to 370 GFLOPS)
and power efficiency (over 5GFLOPS/Watt). This is expected,
since the performance of the matrix multiplication benchmark
is computation bound, and the Tesla C1060 has over 10
times more floating-point peak performance than the HC-1. In
addition, the HC-1 implementation offers no significant speed-
up over a multi-threaded MKL implementation running on an
Intel Xeon E5420 Quad-Core CPU.

The GPU is about 5 times faster than both the CPU and the
Convey Coprocessor. This speed-up decreases to about 2.5 to
4.2 times if we include data transfer from the main memory to
the GPU memory, while the HC-1 coprocessor can be slower
than the CPU when data transfers from the host processor
memory to the coprocessor memory are taken into account.

C. Fast Fourier Transform
In this work, we use the popular FFTW [26] for the CPU

implementation, as FFTW supports multi-threading and is
reported to be more efficient than its Intel MKL counterpart.
Fig. 8 shows the performance of a one-dimensional in-place
single-precision complex-to-complex FFT on the three plat-
forms. The HC-1 outperforms the GPU (CUFFT) by up to a
factor of three for large FFT sizes, and is about 16 times faster
than the single-threaded FFTW, or about 4 times faster than
the multi-threaded version.

The HC-1 implementation of the FFT achieves over 65
GFlops, thanks to its coprocessor memory subsystem that
is optimized for non-unit stride and random memory ac-
cesses [17]. The Tesla C1060 uses GDDR memories which
are optimised for sequential memory access operations and
stream programming for graphics applications. This leads to a
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performance penalty if GPU applications, such as FFT, involve
non-sequential memory accesses [12].

To further investigate the effect of strided memory access
on the performance of the HC-1 and Tesla C1060 GPU, we
conduct the following experiment. We measure the effective
bandwidth that can be achieved with strided memory access,

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

G
FL

O
PS

FFT size

1-dimensional, in-place FFT

HC-1
HC-1 with memory transfer

CuFFT
CuFFT with memory transfer

FFTW serial
FFTW threaded

Fig. 8. 1-dimensional in-place single-precision complex-to-complex FFT

B. Betkaoui, D. B. Thomas, and W. Luk. Comparing performance and energy efficiency of FPGAs 
and GPUs for high productivity computing. In Int. Conf. on Field Programmable Technology (ICFPT), 
pages 94–101. IEEE. 2010. 



Case Study 3: Computational Finance 

•  numerical integration for in option pricing (Black Scholes) 
•  comparison of FPGA, GPU and CPU for 1D integration 

–  results are more differentiated 
–  GPUs performs well in terms of speed, but have low energy efficiency 
–  FPGA is old technology, today's FPGAs would perform even much better 
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TABLE VII
PERFORMANCE AND ENERGY CONSUMPTION COMPARISON OF DIFFERENT IMPLEMENTATION OF 1-D QUAD EVALUATION CORE. THE GEFORCE 8600 GT

HAS 32 PROCESSORS, THE TESLA C1060 HAS 240 PROCESSORS AND THE XEON W3505 HAS TWO PROCESSING CORES

TABLE VIII
PERFORMANCE AND ENERGY CONSUMPTION COMPARISON OF DIFFERENT IMPLEMENTATION OF 2-D QUAD EVALUATION CORE

main thread then adds up all the results from all the blocks. The
CUDA pseudo code for the QUAD evaluation kernel is shown
in Fig. 10. The grid size and block size is set to 60 and 256, re-
spectively. Registers per thread is 16 and the occupancy of each
multiprocessor is 100%.

VII. EVALUATION AND COMPARISON

In this section, the performance and energy consumption of
different implementations of QUAD evaluation core are studied.
We choose the pricing of 1000 European options with grid den-
sity factor and grid size factor as the
benchmark. The typical value of 400 produces highly ac-
curate results, but the reason for choosing a much larger value
is to facilitate performance analysis of the QUAD evaluation
cores with a longer evaluation time. No matter what values of

or , the QUAD evaluation cores are still responsible
for the computation bottleneck of option pricing of the order

as shown in Table II or in multi-dimensional cases.
Simpson’s rule is preferable to the trapezoidal rule in our system
as the error terms of Simpson’s rule decrease at a rate of
which produces more accurate results with the same hardware
complexity. Therefore, Simpson’s rule is adopted for perfor-
mance analysis. The performance and energy consumption anal-
ysis for the pricing of 1-underlying, 2-underlying, and 3-under-
lying assets European options are studied.

The FPGA and GPU implementations are compared to a ref-
erence software implementation. The reference CPU is Intel
Xeon W3505 2.53 GHz dual-core processor. The software im-
plementation is written using C language. It is optimized with
multi-threading using OpenMP API and compiled using Intel

compiler (icc) 11.1 with -O3 maximum speed optimization op-
tion and SSE enabled. Intel Math Kernel Library is used. The
targeted FPGA is Xilinx Virtex-4 xc4vlx160 in the RCHTX
card. The designs are compiled using DK5.1 and Xilinx ISE 9.2.
The targeted GPU is nVidia Geforce 8600 GT with 256 MB of
on board RAM and nVidia Tesla C1060 with 4 GB of on board
RAM. The time measured for the GPU is the execution time of
the evaluation kernel only. The time for copying the data from
the main memory to the global memory of GPU is excluded.
Similarly, the date transfer time for copying the data from main
memory to the block RAM of FPGA is excluded. The perfor-
mance figures obtained reflect the pure processing speed of the
underlying devices only.

We measure the additional power consumption for computa-
tion (APCC) with a power measuring setup involving multiple
equipments. A FLUKE i30 current clamp is used to measure the
additional AC current in the live wire of the power cord during
the computation. This current clamp has an output sensitivity of

100 mV/A in 1 mA resolution. The output of the clamp is
measured in mV scale by a Maplin N56FU digital multi-meter
(DMM), collected through a USB connection and logged with
open source QtDMM software. APCC is defined as the power
usage during the computation time (run-time power) minus the
power usage at idle time (static power). In other words, APCC
is the dynamic power consumption for that particular computa-
tion. Since the dynamic power consumption fluctuates a little,
we take the average value of dynamic power to be the APCC.

The additional energy consumption for computation (AECC)
is defined by the following equation:

(18)



Critical thoughts on Comparative Case Studies 

•  comparative studies are frequently biased 
–  comparison of kernels instead of complete applications (neglect 

overheads) 
–  use of suboptimal code for baseline implementation used for comparison 
–  use of unrealistically small or large problem sizes 

•  not necessarily bad faith 
–  different research cultures with different values that define good and 

interesting research 
–  "acceleration experts" jump on hot problems without understanding it 

sufficiently 

•  so far, no optimal massively parallel architecture has emerged 
–  metrics for success vary: performance, energy/performance, rack space, 

total cost of ownership, software development cost, tool support, ... 
–  all architectures have their sweet spot 
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Outline 

•  history and trends in massively parallel computer architectures 
•  comparative case studies 
•  acceleration of algorithms working on regular grids 

(computational nanophotonics) 
•  conclusions and outlook 
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Outline 

•  history and trends in massively parallel computer architectures 
•  comparative case studies 
•  simplifying the use of massively parallel architectures 
•  conclusions and outlook 
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Simplifying the Use of Massively Parallel Architectures 

•  goal: framework for automated compilation and execution of 
stencil codes on clusters with massively parallel accelerator 
architectures 
–  collaboration with Jens Förstner, University of Paderborn (theoretical 

physicist working in computational nanophotonics) 

•  domain-specific approach 
–  focus on iterative algorithms that work on regular grids (e.g. finite 

difference methods) 
–  provide domain specific language allowing scientist to specify problem at 

a high level 
–  create automated tool flow for generating optimized implementations for 

different massively parallel architectures (cluster with CPUs, FPGAs and/
or GPUs) 

–  validation with applications from computational nanophotonics 
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Overview of the envisioned Framework 
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Case Study: Computational Nanophotonics 

•  test case: microdisk cavity in perfect metallic environment 
–  well studied nanophotonic device 
–  point-like time-dependent source (optical dipole) 
–  known analytic solution (whispering gallery modes) 
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Finite Difference Time Domain Method  (FDTD) 

•  numerical method for solving 
Maxwell's equations 

•  iterative algorithm, computes 
propagation of fields for fixed 
time step 

•  stencil computation on 
regular grid 
–  same operations for each grid 

point 
–  fixed local data access pattern 
–  simple arithmetic 

•  difficult to achieve high 
performance 
–  hardly any data reuse 
–  few operations per data 
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Figure 2: Time-integrated energy density for a microdisk
cavity in a perfect metallic environment

to be updated. Our code generator maps this kind of material
compositions by sampling the physical dimensions with a
user defined sampling factor to a grid and creates arrays
(E

x

, E
y

,H
z

) on the GPU with 3D grid size dimensions
and assigning scalar update coefficients (ca, cb, da, db) to
the grid. The FDTD algorithms can be expressed using the
following set of update equations (for the considered disk
example):

E
x

[i] = ca · E
x

[i] + cb · (H
z

[i]�H
z

[i� dy]) (1)
E

y

[i] = ca · E
y

[i] + cb · (H
z

[i� dx]�H
z

[i]) (2)
H

z

[i] = da · H
z

[i] + db · (3)
·(E

x

[i + dy]� E
x

[i] + E
y

[i]� E
y

[i + dx])

Here, i±dx and i±dy denote neighbors of the grid cell with
index i in x and y direction. Because the stencils operate on
nearest neighbors, we define an update grid region, which
guarantees, that all points can be updated, which ensures
that all accessed nearest neighbors outside the update region
exists. This implies that we do not need to handle border
elements differently from elements inside the update region,
which is an advantage for the considered target hardware
architectures.

To inject non-zero fields into our simulation, we extend
our PDE with a point-like time-dependent inhomogeneity
which physically represents an optical dipole point source.
Depending on the selected maximal simulation time and the
duration of one time step, we get the number of iterations of
our simulation loop. In each iteration of that loop, the E and
H fields are computed based on previous values in separate
substeps, the point source amplitude is added at one grid
point and the time-integrated energy density is computed to
extract the excited mode from the simulation (an example
result is given in Figure 2): H

zsum

[i]+ = H
z

[i]2. We want
to emphasize that the set of update equations can be easily
extended, e.g., to model other material types like Lorentz
oscillators or to perform further analysis on the computed
data.

IV. RESULTS

For evaluation of our approach, we implemented a refer-
ence CPU implementation based on OpenMP using up to
8 cores (Nehalem-microarchitecture) and compared it with
the performance of code generated for the GPU system
(Tesla Fermi) for a range of problem sizes and optimization
parameters. Our MPI-CUDA code was evaluated with two
nodes, connected over ethernet.
As explained above we developed three different code trans-
formation methods to represent the subdomains on which
stencils operate. All choices are analyzed with respect to
their performance for a range of problem sizes, and for single
precision and double precision.

1) The first composition mapping method, No mask, uses
one or more functions to model the geometry of a
setup. This approach imposes additional mathematical
operations to select the appropriate stencil operation
for each point in the grid, but allows to represent
geometries in a compact form and therefore save GPU
memory and bandwidth.
Because threads in a CUDA capable Fermi device
are scheduled in warps (a bunch of 32 threads), it
is recommended that all threads in a warp follow
the same execution path to prevent a performance
penalty caused by serialization. Hence, depending on
the problem geometry, the No mask mapping may
come along with a performance decrease.

2) The second mapping technique is accomplished by
using a Mask, which is essentially a lookup table
containing the numbers 0 or 1 for each grid point.
This number is multiplied by the arithmetic update-
expression and therefore determins if a grid value
is changed or not, hence for 1 (inside subdomian)
the stencil operation is applied, while for the value
0 (outside subdomain) the value of the grid cell
is not changed. Compared to the previous mapping
option, we get a performance increase of up to 420
million stencil operations per second. The overhead of
this technique is given by a float multiplication with
the mask introduced to the stencil equation and the
additional GPU memory capacity and bandwidth con-
sumption for the mask, however no branch divergence
occurs.

3) For small grid sizes (less than 5122), our third transfor-
mation technique Mask using if performs nearly equal
to the Mask method. Here, a boolean lookup table
is used, and a "if" statement determines whether a
stencil operation should be applied to the grid cell. For
grid sizes greater than 40962, in comparison to Mask
a constant performance increase of about 70 million
stencil operations per second for single precision is
achieved despite the additional branch divergence that
can occur. This result is slightly unexpected and can

FDTD update equations 
(for one time step) 



Results 
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Outline 

•  history and trends in massively parallel computer architectures 
•  comparative case studies 
•  simplifying the use of massively parallel architectures 
•  conclusions and outlook 
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Architecture / Application Sweet Spots 
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Architecture / Application Sweet Spot: Multi-Core 

multi-cores are suitable for 
applications that 
•  scale only moderately (benefit 

from high single-core 
performance) 

•  have threads with different 
functionality (MIMD) 

•  are control flow dominated 
•  rely on shared memory 
•  have irregular memory access 

patterns (benefit from caches) 
•  need access to operating system 

functions 
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Architecture / Application Sweet Spot: Many-Core 

many-cores are suitable for 
applications that 
•  scale well, but threads have 

different control flows 
•  compute mostly on private data 

but may also access shared 
data 

•  need access to operating 
system functions 
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Architecture / Application Sweet Spot: GPU 
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GPUs are suitable for 
applications that 
•  are data parallel 
•  have threads with identical 

control flow 
•  have regular memory access 

patterns 
•  work on small, static working sets 

(no dynamic memory allocation) 
•  use floating-point arithmetic 

(preferably single precision) 
•  do not require operating system 

calls 

GPU



Architecture / Application Sweet Spot: FPGA 
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FPGAs are suitable for 
applications that 
•  can be expressed as processing 

pipelines 
•  process streams of data 
•  use unconventional arithmetic 

operations 
•  use non standard data formats FPGA



Conclusions and Outlook 

•  technological and economical reasons caused CPU 
performance and efficiency to stagnate 
–  field of computer architecture has been revived 
–  many new and unconventional ideas are currently explored 
–  it seems clear that the future is massively parallel ... 
–  ... but there are countless open questions 

•  opportunities and challenges for computational sciences 
–  unprecedented levels of performance become affordable 
–  but obtaining high performance comes at a price 
–  programming becomes increasingly difficult, the times where computer 

architecture could be considered a black-box are gone 

•  many research opportunities for making these new architecture 
easier to use by non computer scientists 
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Questions and Contact 

•  Questions? 
  

•  Contact information 
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