Accelerating Scientific Computing with
Massively Parallel Computer
Architectures

IMPRS Winter School, Wroclaw

Jun.-Prof. Dr. Christian Plessl|

Custom Computing
University of Paderborn

PADERBORN
CENTER FOR
2012-11-01 PARALLEL
Die Universitit der Informationsgesellschaft

'L(‘ UNIVERSITAT PADERBORN COMPUTING

Outline

history and trends in massively parallel computer architectures
comparative case studies

simplifying the use of massively parallel architectures
conclusions and outlook

About me

e mini CV

2001 Diploma in Electrical Engineering, ETH Zurich
2006 PhD in Information technology and electrical
engineering, ETH Zurich

2006-2007 Postdoc, ETH Zurich

2007-2011 Postdoc and research group leader,
University of Paderborn

since 9/2011 Assistant professor for Custom
Computing, University Paderborn + head of custom
computing at Paderborn Center for Parallel Computing

 research interests

computer architecture

custom computing (architecture, design methods and
tools, runtime systems)

adaptive and self-optimizing computing systems
application of massively parallel computing in science
and high-performance embedded systems

Outline

history and trends in massively parallel computer
architectures

comparative case studies
simplifying the use of massively parallel architectures
conclusions and outlook

Motivation: Increasing Demand for Computing

computer simulation has been established as a standard
method in many areas of science and engineering

— e.g. computational fluid dynamics, structure simulation, propagation of
electromagnetic fields, ...

— demand for finer temporal and spatial resolution or more complex models
— in many cases compute bound

new areas are addressed with different characteristics
— e.g. bioinformatics, large scale molecular dynamics, system's biology, ...
— compute but increasingly also memory bound (big data)

availability of high performance computing resources is a
competitive advantage or necessity in many areas

Simple CPU Performance Model (1)

performance measured as execution time for given program

cycles . time
instruction cycle

t =\#instructions/

execution

reduce #instructions by increasing work per instruction

c[3..0] = a[3..0] + b[3..0]

a . a3 | a2 | a1 | a0 |
a<—atbxc + + + +
b L b3 [b2 [bl | bo |

mac $a $b $c ~ -

C a3+b3 | a2+b2 | al+b1 a0+b0

multiply-accumulate instruction SIMD/vector instructions

Simple CPU Performance Model (2)

« performance measured as execution time for given program

cycles | time

= #instructions *|- :
instruction| cycle

[

execution

reduce #cycles/instructions (improve throughput)

a=b+c a=b+c¢c
d=a+e d=e +f
overlap execytio_n _°f instructions start multiple instructions at once
(pipelining) (multiple issue/superscalar)
begin execution of dependent concurrently start independent
instructions already before all Instructions

dependencies are resolved 7

Simple CPU Performance Model (3)

« performance measured as execution time for given program

. . cycles ;
= #instructions - - Y . [lume

[:
instruction cycle

execution

execute cycles in shorter time

div ‘ or add , sub ‘

I
div
[

‘or ‘ add ‘i@
I

balance time spent in each use leading semiconductor
pipeline stage technology

Riding the Waves of Moore's Law

« despite all computer
architecture innovations, ;..o
Moore's law contributed

most to performance]
increase o ok s e
— more usable chip area R | Pentium 4 o
— faster clock speed 000
— exponential growth of | [Pentium SR
performance L 000 aman/
m au o
« but since early 2000's
hardly any increase in . T AN
single core performance S5 SN
due to I s N)
— power dissipation ©t ooo’ s

— design complexity °

1970 1975 1980 1985 1990 1995 2000 2005 2010

9

Limits of Single-Core CPU Performance Growth

CPUs not tailored to particular
task

— unknown applications

— unknown program flow

— unknown memory access patterns
— unknown parallelism

generality causes inefficiencies

— poor relation of active chip area to
total area

— excessive power consumption
— difficult design process

die shot of a 4-core
AMD Barcelona CPU

-~ Load/ L1 Data— 12—
—t Slo{fb* ,Cache™ — 1} £

e nstr

sCache §

1 chip area that contributes to

actual computation

10

Parallel Computing Comes to Rescue

« parallel computing is celebrating a renaissance
— single core performance is stagnant

— today processor cores can be integrated on a single chip
— fast networking is available (clusters)

« promise of parallel computing

— divide and spread work to N processors to achieve an N-times speedup
— ideally: use N processors to achieve a speedup of factor N

— improved energy efficiency since processors can be used that provide the
best performance / energy ratio

« practical challenges

— how to program parallel processors (model, language, compiler, ...)
— management of data and I/O
— overheads of parallelization

11

Amdahl's Law — Limits to Parallel Computing

 fraction of non-parallelizable (serial) part of program limits
maximum acceleration when using N processors

Amdahl's Law

1000 ¢ | ‘ ‘ ‘ .
- 20% serial code —]
1 10% serial code ———
Q S ser.n) = 5% serial code ——— .
§ max (5€7,11) 1-ser 1% serial code ——— |
o] Ser + 0.5% serial code
%) 100 + n
o
o]
©
>
Q
N
&}
<
E 10}
£ g
x
O
=
1 L | L | L | L | L | L | L
1 4 16 64 256 1024 4096 16384

CPUs
12

Parallel Processor Architectures

many different processor architectures have been recently
introduced
— typically used as hardware accelerators in combination with regular CPUs

interesting times for computer architecture research

— a lot of experimentation: many simple vs. few complex cores, shared vs.
distributed memory, fixed function vs. customizable, ..

— the future may be heterogeneous

current major trends
— general-purpose graphics processing units (GPGPUSs)

— custom computing / field-programmable gate arrays (FPGAS)
— many-cores e.g. Intel SCC, Intel MIC, Tilera, ...

13

Current Parallel Computing Architectures

multi-core CPU many-core CPU graphics processing field programmable
units (GPU) gate arrays (FPGA)

cores ~10 ~100 ~1000 ~100'000
core complex (opt. for single-thread performance) simple
complexity P Pt 9 P P
computation MIMD + SIMD SIMD data-flow
model
parallelism thread and data parallel data parallel arbitrary
memory L
model shared distributed

power 150W 200W 250W S0W

Schematic View of Massively Parallel Architectures

multi-core CPU

GPU

many-core CPU

. computational unit

. execution controller

FPGA

interconnection network . on-chip memory

15

Custom Computing with FPGAs — Basic Idea

~mentatie”

N

application-specific
processing engine
implemented with
programmable
hardware

pro~ “hle
. .tecCu
application /
algorithm \

« challenges

— translation of application into a custom hardware accelerator

— development of efficient programmable hardware for implementing
accelerators

— enabling wide range of users to perform this task

16

Custom Computing — Example

bioinformatics: substring search in genome sequences

custom data
types

DNA sequence data
_—

pipelining

application-specific

=
(@)

parallel _
operations

match
|A|

wide data paths l
s

match 'ATCA'

interconnect

custom
operations

17

Custom Computing Technology

» reconfigurable hardware architecture
— software programmable processing blocks and
— software programmable interconnect
— massively parallel

FPGA, fine grained (bit oriented)

()

g —> DSP —> on-chip

—|

i - ED’ —> operation [~ ™| SRAM [~

— —

—>
. J
()

l Y REGs
ALU / """"""""" <—!
\/

. J

coarse grained reconfigurable array (word oriented)

18

Maturing Custom Computing Systems

experimental academic systems
— proof-of-concept demonstrators

PCl-attached FPGA acceleration
cards
— most widespread platforms

custom computing servers

— Cray, SGlI, SRC, Convey, Maxeler,
XtremeData, ...

— targeted at HPC
— tight integration of CPU and FPGAs
— domain-specific integrated tool flows

Maxeler MaxNode

19

Example for an Integrated Custom Computing Solution

« Maxeler dataflow computing
— tightly integrated hard- and software
— high-level Java-based specification
— FPGA internals and tools hidden from developer
— suitable for streaming applications

A
b[i] = (a[i-2]+a[i-1]+a[i]) / 3
public class Mav kernel extends Kernel ({ l
public Mav kernel (KernelParameters parameters) {
super (parameters) ; %, +1
HWVar x = io.input(“A"“, hwFloat (8, 24)); |_> -
HWVar prev = stream.offset(x, -1);
HWVar next = stream.offset(x, 1); ¢
HWVar sum = prev + X + next; +
HWVar result = sum / 3;
io.output (“"B“, result, hwFloat (8, 24)); D — 3

20

Outline

history and trends in massively parallel computer architectures
comparative case studies

simplifying the use of massively parallel architectures
conclusions and outlook

21

GFLOPS

Case Study 1: FFT Kernel

« performance and energy efficiency for 1D complex in-place FFT
— CPU (FFTW), GPU (CuFFT), FPGA (Convey HC-1 library)
— scaling: data size O(N), computation O(N*log(N))

— significant difference when considering time/energy for copying data to/
from accelerator

70 600

HC-1 —+— FFTW threaded —+—
HC-1 with memory tgn’?’f__e_lg HC-1
’ u = HC-1 with memory transfer —*—
60 | CUFFT with mem(;:rﬁa::rfg 500 b CuFFT with memory transfer —&—
FFTW threaded CuFFT
50
400 F
B
40 =
2 300}
O
30k T
=
200
20
100 f
10 fF
0 —— == 0

9/G8%01
2512602
Y0EVBLY
80988¢€8

B. Betkaoui, D. B. Thomas, and W. Luk. Comparing performance and energy efficiency of FPGAs and
GPUs for high productivity computing. In Int. Conf. on Field Programmable Technology (ICFPT), pages 94—
101. IEEE. 2010. 22

MFLOPS

Case Study 2: Matrix Multiplication Kernel

« performance and energy efficiency for dense matrix

multiplication (DGEMM)

— CPU (Intel MKL), GPU (CUBLAS), FPGA (Convey math library)

— scaling: data size O(N”*2), computation ~ O(n”*3)

— modest difference when considering time/energy for copying data to/from

accelerator

400

MKL sequential —+—

MKL threaded
350 bk CUBLAS —*—
CML —&—

CUBLAS with memory transfer

300 k CML with memory transfer

250

200 F

150 |

100

50

\

[424%
Y9X¥9
8CIX8CL
9G2X96¢
[452t4%]

N

¥20LxyZol

8¥02X8¥0C

9607X960%

2618%XZ618

MFLOPS/Watt

6000

5000 |

4000

3000

2000

1000

MKL sequential ——
MKL threaded

CUBLAS —*—

CML —&8—

CUBLAS with memory transfer

CML with memory transfer

|

_\}

C2EXTE |

Y9X¥9

8C1Lx8ClL |

9G2X95¢C

=z

¥20LXyeol

8¥02X8¥0¢ |

B. Betkaoui, D. B. Thomas, and W. Luk. Comparing performance and energy efficiency of FPGAs

and GPUs for high productivity computing. In Int. Conf. on Field Programmable Technology (ICFPT),

pages 94-101. IEEE. 2010.

9607X9607 |

23

2618XZ618

Case Study 3: Computational Finance

* numerical integration for in option pricing (Black Scholes)

« comparison of FPGA, GPU and CPU for 1D integration

— results are more differentiated

— GPUs performs well in terms of speed, but have low energy efficiency
— FPGA is old technology, today's FPGAs would perform even much better

FPGA GPU CpPU
Virtex-4 xc4vIx160 Geforce 8600GT Tesla C1060 Xeon W3505

Technology 90nm 80nm 65nm 45nm
Release date Sep 2004 Apr 2007 Sep 2008 Mar 2009
Arithmetic single double single single double double
Clock Rate 100MHz | 81.9MHz 1.35GHz 1.3GHz | 1.3GHz 3.6GHz
Replicated cores 3 1 - - - -
Processing Speed (M values/sec) 300.0 81.9 114.4 546.5 288.7 65.3
Time for 10 values (s) 3.3 12.21 8.74 1.83 3.46 15.31
Acceleration (replicated cores) 4.59x 1.25x 1.75x 8.37x 4.42x 1x
APCC for 107 values (W) 4.18 33 40.55 102.00 99.00 23.60
AECC for 107 values (J) 13.93 40.29 354.42 186.64 342.92 361.30
Normalized energy efficiency 25.93x 8.97x 1.02x 1.94x 1.05x 1x

A. H. T. Tse, D. Thomas, and W. Luk. Design exploration of quadrature methods in option pricing. In IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, volume 20, pages 818-826. IEEE, May 2011.

24

Critical thoughts on Comparative Case Studies

« comparative studies are frequently biased

— comparison of kernels instead of complete applications (neglect
overheads)

— use of suboptimal code for baseline implementation used for comparison
— use of unrealistically small or large problem sizes

* not necessarily bad faith

— different research cultures with different values that define good and
interesting research

— "acceleration experts" jump on hot problems without understanding it
sufficiently
« so far, no optimal massively parallel architecture has emerged

— metrics for success vary: performance, energy/performance, rack space,
total cost of ownership, software development cost, tool support, ...

— all architectures have their sweet spot

25

Outline

history and trends in massively parallel computer architectures
comparative case studies

acceleration of algorithms working on regular grids
(computational nanophotonics)

conclusions and outlook

26

Outline

history and trends in massively parallel computer architectures
comparative case studies

simplifying the use of massively parallel architectures
conclusions and outlook

27

Simplifying the Use of Massively Parallel Architectures

« goal: framework for automated compilation and execution of
stencil codes on clusters with massively parallel accelerator
architectures

collaboration with Jens Forstner, University of Paderborn (theoretical
physicist working in computational nanophotonics)

« domain-specific approach

focus on iterative algorithms that work on regular grids (e.g. finite
difference methods)

provide domain specific language allowing scientist to specify problem at
a high level

create automated tool flow for generating optimized implementations for

different massively parallel architectures (cluster with CPUs, FPGAs and/
or GPUs)

validation with applications from computational nanophotonics

28

Overview of the envisioned Framework

Ey[ix][iy] = ca * Ey[ix][iy] + . T
cb * (Hz[ix+1][iy] - Hz[ix][iy]); high-level description
specified by
hiah-level d e ion of application experts,
Ign-level aescription o E AT
nanophotonic problem e.g. physicist
instance

v
[Ivsi 1 performance
analysis model

l—[code generation tool-flow
‘1’ developed by

[multi-core }[GPU }[FPGA 1 computer
¥ I architecture and
l l programming expert

evaluation / bench i
visualization enchmarking

29

Case Study: Computational Nanophotonics

« test case: microdisk cavity in perfect metallic environment
— well studied nanophotonic device
— point-like time-dependent source (optical dipole)
— known analytic solution (whispering gallery modes)

experimental setup:
microdisk cavity result: energy density

F4 300

vacuum

) t4

perfect metal

F4 250

F4 200

£ 150

0 32 64 96 128 160 192 224 256

x-direction
+ source WMWW

30

Finite Difference Time Domain Method (FDTD)

numerical method for solving
Maxwell's equations

. . . E:r [Z] = ca- Em [Z] +cb- (HZ[Z] _ Hz [Z _ dy]) (1)
iterative glgorlth_m, compL_Jtes Efil = ca Byfi] +cb(Hoi—de— B.[) @)
propagation of fields for fixed H.li] = da-H.li]+db- 3)
time step (Bl + dy] — Eu[i] + Ey[i] — Eyli + dx])
stencil computation on FDTD update equations

regular grid (for one time step)

— same operations for each grid
point
— fixed local data access pattern i+32

— simple arithmetic i+1
difficult to achieve high "
performance 1

— hardly any data reuse i-1

— few operations per data

1 n n+1
n-1/2 n+1/2 n+3/2

31

Stencil operations [MStencils/sec]

4000

3500

3000

2500

2000

1500 |-

1000

500 -

Results

Stencil operations per second for FDTD simulation (microdisc)

CPIU: 8 core naive (2I * Xeon E5620, 2|.4GHz) —
CPU: 8 optimized (2 * Xeon E5620, 2.4GHz) —=—*
GPU: single (Nvidia C2050)
GPU: multi (Nvidia C2050 + GTX480)
)

i Vector Processor: (Convey HC-1, FPGA-based)/—e— |
. il
——
\ -
| |
512 1024 2048 4096

Grid width [log]

working set size for grid size 512 * 512:

(512*512) * 3 fields * 2 (double buffering) * 4 (double precision) = 6MB 29

Outline

history and trends in massively parallel computer architectures
comparative case studies

simplifying the use of massively parallel architectures
conclusions and outlook

33

Architecture / Application Sweet Spots

multi-core CPU

()
0
c

many-core CPU

. computational unit

. execution controller

FPGA

interconnection network . on-chip memory

34

Architecture / Application Sweet Spot: Multi-Core

multi-core CPU

multi-cores are suitable for
applications that

scale only moderately (benefit
from high single-core
performance)

have threads with different
functionality (MIMD)

are control flow dominated
rely on shared memory

have irregular memory access
patterns (benefit from caches)

need access to operating system
functions

35

Architecture / Application Sweet Spot: Many-Core

many-core CPU

many-cores are suitable for
applications that

« scale well, but threads have
different control flows

« compute mostly on private data
but may also access shared
data

* need access to operating
system functions

36

Architecture / Application Sweet Spot: GPU

GPU

GPUs are suitable for
applications that

are data parallel

have threads with identical
control flow

have regular memory access
patterns

work on small, static working sets
(no dynamic memory allocation)
use floating-point arithmetic
(preferably single precision)

do not require operating system
calls

37

Architecture / Application Sweet Spot: FPGA

FPGA

FPGASs are suitable for
applications that

can be expressed as processing
pipelines

process streams of data

use unconventional arithmetic
operations

use non standard data formats

38

Conclusions and Outlook

technological and economical reasons caused CPU
performance and efficiency to stagnate
— field of computer architecture has been revived
— many new and unconventional ideas are currently explored
— it seems clear that the future is massively parallel ...
— ... but there are countless open questions

opportunities and challenges for computational sciences
— unprecedented levels of performance become affordable

— but obtaining high performance comes at a price

— programming becomes increasingly difficult, the times where computer
architecture could be considered a black-box are gone

many research opportunities for making these new architecture
easier to use by non computer scientists

39

Questions and Contact

e Questions?

 Contact information

Jun.-Prof. Dr. Christian Plessl
christian.plessi@uni-paderborn.de

University of Paderborn
Department of Computer Science

40

