Summer school on 'Floquet Physics' (Wroclaw, July 11. – 14., 2016)

IMPRS for Dynamical Processes in Atoms, Molecules and Solids

	Sun. 10/7	Mon. 11/7	Tue. 12/7	Wed. 13/7	Thu. 14/7
9:00-10:40		MH 1+2	FM 2+3	AL 1+2	DB 1+2
10:40-11:00		Coffee	Coffee	Coffee	Coffee
11:00-12:40		MH 3+4	JS 1+2	ASZ 1+2	TO 1+2
12:40-13:30		Lunch	Lunch	Lunch	Lunch
14:00-15:40		GS 1+2		MK 1+2	Departure
15:40-16:10		Coffee	Excursion & Dinner	Coffee	(Train leaves at 14:30)
16:10-17:00		FM 1		MK 3	
18:00	Arrival in the evening	Dinner		Dinner	

MH = Introductory Lecture by Martin Holthaus (4x45 min): The Floquet Picture for Strongly Driven Quantum Systems

GS = Lecture by Giuseppe Santoro (2x45 min): Quantum Annealing and Non-Equilibrium Dynamics of Floquet Chern Insulators

FM = Lecture by Florian Mintert (3x45 min): Design of Polychromatic Driving with Floquet Theory

JS = Lecture by Juliette Simonet (2x45 min): Floquet Engineering of Artifical Gauge Potentials for Neutral Atoms in Optical Lattices

AL = Lecture by Achilleas Lazarides (2x45 min): Many-body Floquet systems: interactions and localisation

ASZ = Lecture by Alexander Szameit (2x45 min): Topological Photonics

MK = Lecture by Marek Kus (3x45 min): Periodically driven quantum systems. Integrability, chaos, and control

DB = Lecture by Dieter Bauer (2x45 min): Floquet Theory as a Tool to Analyze Strong-Field Ionization Dynamics

TO = Lecture by Takashi Oka (2x45 min): Strongly Correlated Floquet states studied by the Green's function method

(Double slots of 2x45 min. are scheduled with 10 min. break in-between)